4H-SiC homoepitaxial films were grown on 8° off-axis porous 4H-SiC (0001) faces in the temperature range of by chemical vapor deposition from bis(trimethylsilyl)methane (BTMSM) precursor. The activation energy for growth was 5.6 kcal/mol, indicating that the film growth is dominated by the diffusion-limited mechanism. Triangular stacking faults were incorporated in the SiC thin film grown at low temperature of 1280°C due to the formation of 3C-SiC polytype. Moreover, super-screw dislocations appeared seriously in the SiC film grown below 1320°C. Clean and featureless morphology was observed in the SiC film grown below 25 standard cubic centimeters per minute (sccm) carrier gas flow rate of BTMSM at 1380°C while 3C-SiC polytype with double positioning boundaries grew at 30 sccm flow rate of BTMSM. The dislocation density of the epi layer was strongly influenced by the growth temperature and flow rate of BTMSM. Double axis crystal X-ray diffraction and optical microscopy analysis revealed that the dislocation density decreased at the higher growth temperature and lower flow rate of BTMSM. The full width at half maximum of the rocking curve of the film grown at optimized condition was 7.6 arcsec and the sharp free exciton and Al bound exciton lines appear in the epi layer, which indicates Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
During the last decade, the use of single crystal germanium (Ge) layers and structures in combination with silicon (Si) substrates has led to a revival of defect research on Ge. In Si crystals, dopants and stresses affect the intrinsic point defect (vacancy V and self-interstitial I) parameters and thus change the thermal equilibrium concentrations of V and I Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
Current-injected light emission was confirmed for metal organic vapor phase epitaxy (MOVPE) grown (Ga)InAs/InP quantum dots (QDs) on directly bonded InP/Si substrate. The InP/Si substrate was prepared by directly bonding of InP thin film and a Si substrate using a wet-etching and annealing process. A p–i–n LED structure including Stranski–Krastanov (Ga)InAs/InP QDs was grown by MOVPE on an InP/Si substrate. No debonding between Si substrate and InP layer was observed, even after MOVPE growth and operation of the device under continuous wave conditions at RT. The photoluminescence, current/voltage, and electroluminescence characteristics of the device grown on the InP/Si substrate were compared with reference grown on an InP substrate. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
3333 Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
A series of shock-recovery experiments on InSb single crystals along the (100) or (111) axes up to 24 GPa were performed using flyer plate impact. The structures of recovered samples were characterized by X-ray diffraction (XRD) analysis. According to calculated peak pressures and temperatures, and phase diagram for InSb, the sample could undergo phase transitions from zinc-blende structure to high-pressure phases. However, the XRD trace of each sample corresponded to powder pattern of InSb with zinc-blende structure. The XRD trace of each sample revealed the absence of additional constituents including metastable phases and high-pressure phases of InSb except for samples shocked around 16 GPa. At 16 GPa, in addition to zinc-blende structure, additional peaks were obtained. One of these peaks may correspond to the Cmcm or Immm phase of InSb, and the other peaks were not identified. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com