A graphite capping layer has been evaluated to protect the surface of patterned and selectively implanted 4H–SiC epitaxial wafers during post-implantation annealing. AZ-5214E photoresist was spun and baked in vacuum at temperatures ranging from 750 to 850 °C to form a continuous coating on both planar and mesa-etched SiC surfaces with features up to 2 µm in height. Complete conversion of the hydro...
In this paper we review the developments of producing non-polar (i.e. m-plane and a-plane) and semi-polar (i.e. (20.1)-plane) wafers by ammonothermal method. The growth method and polishing results are described. We succeeded in producing 26 mm × 26 mm non- and semi-polar wafers. These wafers possess outstanding structural and optical properties, with threading dislocation density of the order of ...
Wafer-scale arrays of well-ordered Pb(Zr0.2Ti0.8)O3 nanodiscs and nanorings were fabricated on the entire area (10 mm × 10 mm) of the SrRuO3 bottom electrode on an SrTiO3 single-crystal substrate using the laser interference lithography (LIL) process combined with pulsed laser deposition. The shape and size of the nanostructures were controlled by the amount of PZT deposited through the patterned ...
We report the Au-assisted chemical beam epitaxy growth of defect-free zincblende InSb nanowires. The grown InSb segments are the upper sections of InAs/InSb heterostructures on InAs(111)B substrates. We show, through HRTEM analysis, that zincblende InSb can be grown without any crystal defects such as stacking faults or twinning planes. Strain-map analysis demonstrates that the InSb segment is nea...
The recent advances in epitaxial SiC films' growth on Si are overviewed. The basic classical methods currently used for SiC films' growth are discussed and their advantages and disadvantages are explored. The basic idea and the theoretical background for a new method of the synthesis of epitaxial SiC films on Si are given. It will be shown that the new method is significantly different from the cl...
It is still a great challenge for semiconductor based-devices to obtain a large magnetoresistance (MR) effect under a low magnetic field at room temperature. In this paper, the photoinduced MR effects under different intensities of illumination at room temperature are investigated in a semi-insulating gallium arsenide (SI-GaAs)-based Ag/SI–GaAs/Ag device. The device is subjected to the irradiation...
Highly tensile-strained sub-monolayer Ge nanostructures on GaSb have been grown by molecular beam epitaxy and studied by ultrahigh-vacuum scanning tunneling microscopy. Four different coverage rates of Ge nanostructures on GaSb are achieved and investigated. It is found the growth of Ge on GaSb follows 2D growth mode. The crystal lattice of the sub-monolayer Ge nanostructures is coherent with that...
This paper proposes a new three-dimensional (3D) photolithography technology for a high-resolution micropatterning process on a fiber substrate. A brief review on the lithography technology of the non-planar surface is also presented. The proposed technology mainly comprises the microfabrication of the 3D exposure module and the spray deposition of thin resist films on the fiber. The 3D exposure m...