We present a novel process for integrating germanium with silicon-on-insulator (SOI) wafers. Germanium is implanted into SOI which is then oxidized, trapping the germanium between the two oxide layers (the grown oxide and the buried oxide). With careful control of the implantation and oxidation conditions this process creates a thin layer (current experiments indicate up to 20-30nm) of almost pure...
Highly tensile-strained sub-monolayer Ge nanostructures on GaSb have been grown by molecular beam epitaxy and studied by ultrahigh-vacuum scanning tunneling microscopy. Four different coverage rates of Ge nanostructures on GaSb are achieved and investigated. It is found the growth of Ge on GaSb follows 2D growth mode. The crystal lattice of the sub-monolayer Ge nanostructures is coherent with that...
X-ray topographic and chemical etching examination of Si:Ge single crystals containing 1.2 at% and 3.0 at% Ge, together with precise lattice parameter measurements, was performed. Diffraction contrasts in the form of concentric `quasi-circles' (striations), probably due to the non-uniform distribution of Ge atoms, were observed in projection topographs. The etching patterns reveale...
Using plasma enhanced chemical vapor deposition (PECVD) at 13.56 MHz, a seed layer is fabricated at the initial growth stage of the hydrogenated microcrystalline silicon germanium (μc-Si1−xGex:H) i-layer. The effects of seeding processes on the growth of μc-Si1−xGex:H i-layers and the performance of μc-Si1−xGex:H p—i—n single junction solar cells are investigated. By applying this seeding method, ...