Other Wafers LSAT Wafer Quantity Material Orientation. Size Thickness Polish Resistivity Type Dopant Prime flat EPD Ra PCS (mm) (μm) Ω·cm Orientation /cm2 nm 1-100 LSAT (100) 50.8 500 SSP N/A N/A N/A N/A <0.5 1-100 LSAT (100) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 LSAT (110) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 LSAT (111) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 LSAT (100) 10X10 2000 SSP N/A N/A N/A N/A <0.5 As a LSAT wafer supplier,we offer LSAT wafer list for your reference, if you need price detail, please contact our sales team Note: *** As manufacturer, we also accept small quantity for researcher or foundry. ***Delivery time: it depends on stock we have, if we have stock, we can ship to you soon. TiO2 Wafer Quantity Material Orientation. Size Thickness Polish Resistivity Type Dopant Prime flat EPD Ra PCS (mm) (μm) Ω·cm Orientation /cm2 nm 1-100 TiO2 (110) 5x5 500 SSP N/A N/A N/A N/A <0.5 1-100 TiO2 (011) 5x5 500 SSP N/A N/A N/A N/A <0.5 1-100 TiO2 (001) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 TiO2 (110) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 TiO2 (011) 10X10 500 SSP N/A N/A N/A N/A <0.5 As a TiO2 wafer supplier,we offer TiO2 wafer list for your reference, if you need price detail, please contact our sales team Note: *** As manufacturer, we also accept small quantity for researcher or foundry. ***Delivery time: it depends on stock we have, if we have stock, we can ship to you soon. LAO Wafer Quantity Material Orientation. Size Thickness Polish Resistivity Type Dopant Prime flat EPD Ra PCS (mm) (μm) Ω·cm Orientation /cm2 nm 1-100 LAO (100) 50.8 500±50 DSP N/A N/A N/A N/A <0.5 As a LAO wafer supplier,we offer LAO wafer list for your reference, if you need price detail, please contact our sales team Note: *** As manufacturer, we also accept small quantity for researcher or foundry. ***Delivery time: it depends on stock we have, if we have stock, we can ship to you soon. Al2O3 Wafer Quantity Material Orientation. Size Thickness Polish Resistivity Type Dopant Prime flat EPD Ra PCS (mm) (μm) Ω·cm Orientation /cm2 nm 1-100 Al2O3 (0001) 10X10 500 DSP N/A N/A N/A N/A <0.5 1-100 Al2O3 (0001) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 Al2O3 (0001) 20X20 500 SSP N/A N/A N/A N/A <0.5 1-100 Al2O3 (0001) 30X30 500 SSP N/A N/A N/A N/A <0.5 As a Al2O3 wafer supplier,we offer Al2O3 wafer list for your reference, if you need price detail, please contact our sales team Note: *** As manufacturer, we also accept small quantity for researcher or foundry. ***Delivery time: it depends on stock we have, if we have stock, we can ship to you soon. SrTiO3 Wafer Quantity Material Orientation. Size Thickness Polish Resistivity Type Dopant Prime flat EPD Ra PCS (mm) (μm) Ω·cm Orientation /cm2 nm 1-100 SrTiO3 (100) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 SrTiO3 (110) 10X10 500 SSP N/A N/A N/A N/A <0.5 1-100 SrTiO3 (111) 10X10 500 SSP N/A N/A N/A N...
Graphene Chemical Vapor Deposition System We provide series of grapheme 2D systems for grapheme,CNT and other 2D material growth. and offer the most efficient Chemical Vapor Deposition (CVD) system for graphene growth (is compatible for both LPCVD and APCVD growth). We also can adjust each of these standard systems can be customized to the user's specific application requirements. System Configurations: 1) Reaction chamber Standard working temperature: ~1000 Maximum working temperature: ~1200°C. Rated power: 2.5 kW. Seal mode: Stainless steel the KF quick flange extrusion seal, Cooling mode: External water cooling. 2) Gas and controller Ar Purity: 99.999%; Flow range: 0-1000 sccm ; H2 Purity: 99.999%; Flow range: 0-200 sccm ; CH4 Purity 99.999%; Flow range: 0-10 sccm ; 13CH4* Purity 99%; Flow range: 0-10 sccm. (*Optional) 3) Vacuum system Mechanical pump: Pumping speed: 400 L/min; Base pressure: 1×10-3 Torr. Liquid nitrogen trap* (*Optional) Over pressure protection Vacuum Gauge Controller: Manually control chamber pressure. (*Automatic control mode is optional) 4) Control modules Our graphene CVD control software for real time process control, data logging and display, recipe generation and editing. Temperature, flow rate and vacuum pressure are easily controlled or edited by computer. (Manual control is still available). Preprogrammed recipes for graphene growth are supplied for users. Our objective: Commercialization and mass production of new 2D materials such as graphene is fast becoming a reality, and universities and researchers all over the world are on limited budgets but require high performance of their equipment or system.Therefore our objective is to provide excellent grapheme CVD system for grapheme growth in the lowest price to meet their price target. The features: 1)Fully automatically control system with preprogrammed recipes for graphene growth. 2)Baseline processes & optimization assistance 3)Standardization or customization systems to suit any budget 4)High performance single crystal graphene growth in the single crystal size up to a few millimetres 5)Unique isotope-labeling growth technique for dynamics study 6)We offers professional installation and training services to help transition our products into your working environment--- including technical application and knowledge transfer. The installation process begins with a detailed scope-of-work review to define your installation and training requirements, site environment, geography, project timeline, and reporting requirements. Based on your system's unique requirements, we'll assign the right specialists and installation technicians to successfully perform the job. We offer personalized training of graphene CVD system, ensuring knowledge transfer (especially the latest ...
Graphene Wafers/films Graphene Wafers/films Item No Description MG/PET-10-10 Monolayer Graphene on PET film (10 mm x 10 mm) MG/PET-20-20 Monolayer Graphene on PET film(20 mm x 20 mm) MG/PET-50-50 Monolayer Graphene on PET film (50 mm x 50 mm) MG/PET-100-100 Monolayer Graphene on PET film (100 mm x 100 mm) MG/PET-300-200 Monolayer Graphene on PET film(300 mm x 200 mm) MG/PET-500-200 Monolayer Graphene on PET film (500 mm x 200 mm) MG/SiO2/Si-10-10 Monolayer Graphene on SiO2/Silicon (10mm x 10mm) MG/SiO2/Si-25-25 Monolayer Graphene on SiO2/Silicon(1 inch x 1 inch) MG/SiO2/Si-100 Monolayer Graphene on SiO2/Silicon (100mm Wafer) BG/SiO2/Si-10-10 Bilayer Graphene on SiO2/Silicon(10 mm x 10 mm) TG/SiO2/Si-10-10 Trilayer Graphene on SiO2/Silicon (10 mm x 10 mm) MG/Cu-10-10 Monolayer Graphene on Copper (10 mm x 10 mm) MG/Cu-20-20 Monolayer Graphene on Copper (20 mm x 20mm) MG/Cu-25-25 Monolayer Graphene on Copper (1 inch x 1 inch) MG/Cu-50-50 Monolayer Graphene on Cu (50 mm x 50 mm) MG/Cu-100-50 Monolayer Graphene on Cu (100 mm x 50 mm) MG/Cu-100 Monolayer Graphene on Cu (100mm wafers) MG/Ni-10-10 Graphene growth on nickel(10mm x 10mm) MG/Ni-20-20 Graphene growth on nickel(20mm x 20mm) MG/Ni-30-20 Graphene growth on nickel(30mm x 20mm) MG/Ni-50-20 Graphene growth on nickel(50mm x 20mm) Source:PAM-XIAMEN For more information, please visit our website:www.powerwaywafer.com, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com
Silicon Wafer Si wafer Substrate -Silicon Quantity Material Orientation. Diameter Thickness Polish Resistivity Type Dopant Nc Mobility EPD PCS (mm) (μm) Ω·cm a/cm3 cm2/Vs /cm2 1-100 Si N/A 25.4 280 SSP 1-100 P/b N/A N/A N/A 1-100 Si N/A 25.4 280 SSP 1-100 P/b (1-200)E16 N/A N/A 1-100 Si (100) 25.4 525 N/A <0.005 N/A N/A N/A N/A 1-100 Si (100) 25.4 525±25 SSP <0.005 N/A N/A N/A N/A 1-100 Si with Oxide layer (100) 25.4 525±25 SSP <0.005 N/A N/A N/A N/A 1-100 Si (100) 25.4 350-500 SSP 1~10 N/A N/A N/A N/A 1-100 Si (100) 25.4 400±25 P/E <0.05 P/ N/A N/A N/A 1-100 Si (100) 50.4 400±25 P/E <0.05 P/ N/A N/A N/A 1-100 p-Si with 90 nm SiO2 (100) 50.4 500±25 P/E <0.05 P/ N/A N/A N/A 1-100 n-Si with 90 nm SiO2 (100) 50.4 500±25 P/E <0.05 N/ N/A N/A N/A 1-100 p-Si with 285 nm SiO2 (100) 50.4 500±25 P/E <0.05 N/ N/A N/A N/A 1-100 n-Si with 285 nm SiO2 (100) 50.4 500±25 P/E <0.05 N/ N/A N/A N/A 1-100 Si with electrodes (100) 50.8 400 N/A <0.05 N/p 1E14-1E15 N/A N/A 1-100 Si (100) 50.8 275 SSP 1~10 N/A N/A N/A N/A 1-100 Si (100) 50.8 275±25 SSP 1~10 N/p N/A N/A N/A 1-100 Si (111) 50.8 350±15 SSP >10000 N/A N/A N/A N/A 1-100 Si (100) 50.8 430±15 SSP 5000-8000 N/A N/A N/A N/A 1-100 Si (111) 50.8 410±15 SSP 1~20 N/A N/A N/A N/A 1-100 Si (111) 50.8 400-500 SSP >5000 N/A N/A N/A N/A 1-100 Si (100) 50.8 525±25 SSP 1~50 N/A N/A N/A N/A 1-100 Si (100) 50.8 500±25 SSP 1~10 N P N/A N/A N/A 1-100 Si (100) 50.8 500±25 P/P >700 P/ N/A N/A N/A 1-100 Si (100) 76.2 400±25 P/E <0.05 P/ N/A N/A N/A 1-100 p-Si with 90 nm SiO2 (100) 76.2 500±25 P/E <0.05 P/ N/A N/A N/A 1-100 n-Si with 90 nm SiO2 (100) 76.2 500±25 P/E <0.05 N/ N/A N/A N/A 1-100 p-Si with 285 nm SiO2 (100) 76.2 500±25 P/E <0.05 N/ N/A N/A N/A 1-100 n-Si with 285 nm SiO2 (100) 76.2 500±25 P/E <0.05 N/ N/A N/A N/A 1-100 Si (100) 100 625 SSP >10000 N/A N/A N/A N/A 1-100 Si (100) 100 525 SSP N/A N/P N/A N/A N/A 1-100 Si (100) 100 320 SSP >2500ohm·cm P/b N/A N/A N/A 1-100 Si (100) 100 N/A SSP 10~30 N/p N/A N/A N/A 1-100 Si (100) 100 505±25 SSP 0.005-0.20 N/P-doped N/A N/A N/A 1-100 Si (100) 100 381 SSP 0.005-0.20 N/P-doped N/A N/A N/A 1-100 Si (100) 100 525 DSP 1-100 N/A N/A N/A N/A 1-100 Si (100) 100 525 DSP 1-100 N/A N/A N/A N/A 1-100 Si (100) 100 625±25 SSP 0.001-0.004 N/A N/A N/A N/A 1-100 Si with Oxide layer 3000A (100) 100 675±25 SSP 0.001-0.004 N/A N/A N/A N/A 1-100 Si (100) 100 625±25 SSP 0.001-0.004 N/A N/A N/A N/A 1-100 Si (100) 100 N/A SSP N/A P/b N/A N/A N/A 1-100 Si (100) 100 500±25 SSP 1~25 N/A N/A N/A N/A 1-100 Si (100) 100 500 SSP 1~10 P/ N/A N/A N/A 1-100 Si (100) 100 500±25 P/E 1—10 N/ N/A N/A N/A 1-100 Si (100) 100 500/525±25 P/P 1—10 N/ N/A N/A N/A 1-100 Si (100) 100 500/525±25 N/A N/A N/A N/A N/A N/A 1-100 Si (100) 100 500±25 P/P >700 P/ N/A N/A N/A 1-100 Si (100) 150 675±25 N/A 0.001-0.004 P/b N/A N/A N/A 1-100 Si (100) 150 675±25 N/A 0.001-0.004 P/b N/A N/A N/A 1-100 Si (100)/(111) 150 550~650 DSP N/A N/A N/A N/...
Substrates for III-V nitride Film Deposition Crystal Structure M.P. Density Lattice Mis-match to GaN Thermal Expansion Growth Tech. .& Max size Standard substrate size (mm) oC g/cm3 (10-6/k) SiC (6H as example) Hexagonal ~2700 3.21 3.5 % atori. 10.3 CVD Ø2" x 0.3,Ø3"x0.3 a=3.073 Å 20x20x0.3,15x15x0.3 c=15.117 Å Ø3“ 10x10x0.3,5x5x0.3 subl. 1 side epi polished Al2O3 Hexagonal 2030 3.97 14% atori. 7.5 CZ Ø50 x 0.33 a=4.758 Å Ø25 x 0.50 c=12.99 Å Ø2” 10x10x0.5 1 or 2 sides epi polished LiAlO2 Tetragonal 1900 ~ 2.62 1.4 % atori. / CZ 10x10x0.5 a=5.17 Å Ø20 mm 1 or 2 sides epi polished c=6.26 Å LiGaO2 Orthor. 1600 4.18 0.2 % atori. / CZ 10x10x0.5 a=5.406 Å Ø20 mm 1 or 2 sides epi polished b=5.012Å c=6.379 Å MgO Cubic 2852 3.58 3% atori. 12.8 Flux 2”x2”x 0.5 mm,Ø2” x 0.5 mm a=4.216 Å 1”x1”x 0.5 mm,Ø1” x 0.5 mm Ø2" 10 x10x0.5 mm 1 or 2 sides epi polished MgAl2O4 Cubic 2130 3.6 9% atori. 7.45 CZ Ø2" x 0.5 a=8.083 Å Ø2“ 10x10x0.5 1 or 2 sides epi polished ZnO Hexag. 1975 5.605 2.2 % atori. 2.9 Hydro-thermal 20x20x0.5 a=3.325 Å 20mm 1 or 2 sides epi polished c=5.213 Å GaN Hexagonal 6.15 5.59 10x10x0.475mm 5x5x0.475mm
Superconductor Substrates Crystal Structure M.P. Density Thermal Expansion Dielectric constant Growth Tech. & max. size standard 1or 2 sides epi polished wafer oC g/ cm3 LSAT Cubic 1840 6.74 10 22 CZ 20x20x0.5mm (LaAlO3)0.3 -(Sr2AlTaO8)0.7 a=3.868 Å Ø35mm 10x10x0.5mm LaAlO3 Rhombo. 2100 6.51 9.2 24.5 CZ Ø3"x0.5mm a=3.790 Å Ø3" Ø2"x0.5mm c=13.11 Å Ø1"x0.5mm 10x10x0.5mm MgO Cubic 2852 3.58 12.8 9.8 Flux Ø2"x0.5mm a=4.21 Å Ø2" 10x10x0.5mm NdGaO3 Orthor. 1600 7.57 7.8 25 CZ Ø2"x0.5mm a=5.43 Å Ø2" 10x10x0.5mm b=5.50 Å c=7.71 Å SrTiO3 Cubic 2080 5.12 10.4 300 vernuil 10x10x0.5mm a=3.90 Å Ø30mm SrLaAlO4 Tetrag. 1650 16.8 CZ 10x10x0.5mm a=3.756 Å Ø20mm c=12.63 Å YAlO3 Orthor. 1870 4.88 2 ~ 10 16`20 CZ 10x10x0.5mm a=5.176 Å b=5.307 Å Ø30mm c=7.355 Å YSZ Cubic ~2500 5.8 10.3 27 Flux Ø2"x0.5mm a=5.125 Å Ø2" 10x10x0.5m
Epi/Thin Film on Substrate GaN Substrate/Template SiO2+Si3N4 on Silicon wafer Substrate GaAs/AlGaAs on GaAs (Si) Substrate SiC 4H Film on 4H-SiC Substrate AlN Thin Film Substrate Aluminum Film Substrate Silicon Nitride on Corning 7980 Substrate La0.7Sr0.3MnO3 + PbZr(x)Ti(1-x)O3 on Nb(SrTiO3) substrate Diamond on Silicon Wafer Substrate Ag Conductive Film(Planarized silver nanowir)substrate FTO Film on Substrates Silicon Nitride on Silicon substrate La0.5Sr0.5TiO3 film substrate Au-coated Silicon Wafer /Glass Slides Substrate Ge Epi-Film on Si Substrate Au (oriented polycrystalline)/Cr/SiO2/Si Substrate Graphene Film on Ni/SiO2/Si Substrate Au (oriented polycrystalline)/Ti/SiO2/Si Substrate PbZrxTi 1-xO3 (PZT) Substrate La0.7Sr0.3MnO3 + PbZr(x)Ti(1-x)O3 on SrTiO3 Substrate Silver(Ag) on Si Wafer Substrate MoS2 EPI Film on SiO2/Si Substrate SrMoO4 Film Substrate Ba1 xSrxTiO3 Film on (Pt/Ti/SiO2/Si) Substrate Mo Coated Sodalime Glass Substrate SrRuO3 Film Substrate ITO Coated(Sodalime) Glass / Plastic Substrate Ni Coated Si Substrate SOI Wafer ( Si On Insulator ) Substrate TiO2 Coated Sodalime Glass Substrate Thermal Oxide Substrate Boron Nitride on Silicon ITO/ZnO coated Sodalime Glass Substrate BiFeO3 Film on Substrate Si+SiO2+Ti( or TiO2)+Pt Thin Film Substrate YBCO Epi Film on SrTiO3, LaAlO3, Al2O3 Substrate YIG Epi Film on GGG Substrate CeO2 Epi Thin film on YSZ Substrate Cu Epi Film on Si substrate InGaAs EPI on InP Substrate ZnO Thin Film on Sapphire Substrate SOS (Silicon on Sapphire)Substrate ZnO/Pt/Ti Film on Si Substrate ZnO on Glass/Fused Silica Substrate ZnO/Au/Cr Film on Si Substrate LaNiO3 Film Substrate AlGaN Substrate/Template
Single Crystal CeO2 Crystal Fe3O4 Crystal SnO2 Crystal Cu2O Crystal Fe2O3 Crystal MnO Crystal PrScO3 Crystal Substrate NdScO3 Crystal Substrate NdScO3 Crystal Substrate GdScO3 Crystal Substrate DyScO3 Crystal Substrate SOI Wafer Ti Terminal SrTiO3 HOPG(highly oriented pyrolytic graphite) ZnO/cAl2O3 Film AIN on Sapphire Wafer